



# Status of ESA's Next Gravitational-Wave Observatory (NGO, a.k.a. LISA Light, EuLISA)

Robin Stebbins, Goddard Space Flight Center NAC Astrophysics Subcommittee Meeting 13 July 2011

## NASA

#### **Activities**

- Core design team
  - Members: Danzmann, Vitale, Jennrich, McNamara, Gianolio, Bender, Stebbins + others
  - Weekly telecons March-July
- Science team meetings April 14<sup>th</sup>, May 17<sup>th</sup>, July 9th
- Science performance task force
  - About 30 people, including 8 U.S. researchers
  - Eight telecons April 21<sup>st</sup> July 12<sup>th</sup>
  - Collaboration wiki at lisa-light.aei.mpg.de/
- Concurrent Design Facility (CDF) study, May-July
  - Information meeting, 6 study sessions, final report July 8<sup>th</sup>
- Astrium industrial study July 13<sup>th</sup> October 31<sup>st</sup>
- NASA engineering support on orbits, trajectories and systems engineering

## NASA

#### **Current Concept**

- Basic parameters
  - 1 Mkm arms
  - 10° heliocentric, drift-away orbits
  - Corner and two end spacecraft (4 links)
  - Launch on 2 Soyuz-Fregat from Kourou
  - Lunar gravity assist for end spacecraft, direct injection from sub-GTO for corner spacecraft
  - 2 yr science operations, consumables for 5 yr
- LISA payload (drag-free, laser power, telescope diameter, fixed measurement noise)
- Payload from member states

### **NGO Concept**





### **Sensitivity Curve**



#### Approximative sensitivity for 4 links



Baseline Configuration: C2, red curve



#### Science Performance

| Sources                              | NGO    | LISA       |
|--------------------------------------|--------|------------|
| Galactic binaries                    | ~4,500 | >20,000    |
| Verification binaries                | 4      | 7          |
| Massive Black Hole Binaries          | 34     | Hundreds   |
| Mean MBH mass uncertainty            | 0.1%   | 0.01%      |
| Mean sky position uncertainty        | TBD    | 30 arc min |
| Luminosity distance uncertainty, z~5 | 100%   | 20%        |
| Extreme Mass Ratio Inspirals         | Tens   | Thousands  |

#### Notes:

- 1. Scientific performance is a complex function of instrument performance, requiring extensive calculations. Only initial rough calculations have been performed on the NGO baseline concept.
- 2. Including additional waveform physics will likely increase performance.
- 3. Projected performance of LISA-like detectors has been increasing for several years as additional physics has been included in waveforms.
- 4. Anticipated improvements in performance calculations should lead to better performance.



#### **Planned Activities**

- Industrial study, biweekly August through October
  - Review and revise CDF results (e.g., payload)
  - Additional analyses and design work
- Science performance task force
  - Re-do science performance calculation for baseline and 2 Mkm option
- Science team meeting September 13-14 in Paris
- Prepare Yellow Book (concept overview, science, requirements, payload, mission design, operations)
- Prepare Mission Concept Document (requirements, orbit analysis, launch vehicle, spacecraft, payload, operations)



#### **Conclusions**

- NGO can do extraordinary astrophysics.
- No known showstoppers, after a preliminary engineering study
- NGO is derived from well-studied LISA design, especially the payload
- NGO is compatible with LISA Pathfinder technology demonstration flight
- Did I mention that it makes the 850 M€ cost cap, and can be launched in 2022?